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Abstract. We consider the perturbations of the three-state Potts conformal field theory
introduced by Cardy as a description of the chiral three-state Potts model. By generalizing
Zamolodchikov’s counting argument and by explicit calculation we find new inhomogeneous
conserved currents for this theory. We conjecture the existence of an infinite set of conserved
currents of this form and discuss their relevance to the description of the chiral Potts models.

1. Introduction

The chiral three-state spin chain (see, e.g., [1, 2]) has the Hamiltonian

H = − 2√
3

∑
j

(
e−iϕ/3σj + eiϕ/3σ

†
j

)+ λ(e−iφ/30j0
†
j+1+ eiφ/30

†
j 0j+1

)
(1)

wherej labels the sites and the matricesσj and0j at each site are

σ =
 1 0 0

0 ω 0

0 0 ω2

 0 =
 0 0 1

1 0 0

0 1 0


with ω = exp(2π i/3). If cosϕ = λ cosφ then the model is known to be integrable [2],
and is self-dual forφ = ϕ. The Hamiltonian of the ‘standard’ three-state Potts model is
obtained from (1) by settingϕ = φ = 0, and this has a second-order phase transition at
λ = 1 which is described by a conformal field theory withc = 4

5 [3].
The standard model can be viewed as a perturbation of this conformal field theory by a

particular field [3], known as the thermal perturbation (λ corresponding to temperature),
and it is known that the resulting massive field theory is integrable with an infinite
set of holomorphic and anti-holomorphic conserved quantities [4]. The existence of
several of these conserved quantities can be shown by a simple counting argument due
to Zamolodchikov [4, 5]. It is interesting to note here that the corresponding perturbation
of the lattice model is probably not integrable in the usual sense.

In [6], Cardy considered the possibility that the full chiral Potts model can be viewed
as a perturbation of this conformal field theory. He pointed out that half of the conserved
quantities (the anti-holomorphic, say) of the thermal perturbation remain conserved when
an extra, chiral, perturbation is added and identified this doubly perturbed model depending
on two free parameters with the self-dual sub-sector of the general chiral three-state Potts
model, but the relation between the integrable sub-sector of the chiral spin chain and this
integrable field theory was unclear. However, it is still remarkable that such a perturbation
by two relevant fields is integrable as the only double perturbations previously known
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to be integrable are the staircase models [7] which have one relevant and one irrelevant
perturbation.

One question outstanding was whether there are any counterparts in the doubly perturbed
theory to the holomorphic conserved quantities of the thermal perturbation. In this article
we show that the double perturbation does have further conserved quantities which reduce
to the ‘missing’ holomorphic conserved quantities when the ‘extra’ perturbation is removed,
and conjecture that all the conserved quantities of the thermal perturbation can be extended
in this way to conserved quantities of the doubly perturbed model.

Zamolodchikov’s counting argument generalizes to the case of a double perturbation
and proves the existence of two extra conserved quantities; we have checked the existence
of two more explicitly, but at the moment a general proof is lacking.

The outline of this paper is as follows. We first recall the conformal field theory
treatment of the Potts model, the conserved quantities for the various perturbations, and how
the existence of several of these can be deduced by Zamolodchikov’s counting argument.

We then consider the conserved quantities of the doubly perturbed model, give a counting
argument and a few explicit examples of conserved quantities of this model.

Finally we speculate on the possible implications of these results for the doubly-
perturbed and general perturbations of the conformal Potts model and the relation of the
perturbed conformal field theories to the spin chain.

2. The conformal field theory of the three-state Potts model

The three-state Potts model was one of the first conformal field theories to be studied [3]
and is both a minimal model of the Virasoro algebra and of theW3 algebra [8], and hence
the same field content admits two descriptions.

The Potts model hasc = 4
5 and has Virasoro primary fields of weights

(h, h) = (0, 0), (3, 0), (0, 3), (3, 3), (2
3,

2
3), ( 1

15,
1

15), ( 2
5,

2
5), ( 2

5,
7
5),

( 7
5,

2
5), ( 7

5,
7
5). (2)

The field with weights(3, 0) is the holomorphic generatorW(z) of theW3 algebra, and we
take its commutation relations to be

[Wm , Wn] = 13
10 800m(m

2− 1)(m2− 4)δm+n + 13
720 (m− n) (2m2−mn+ 2n2− 8) Lm+n

+ 1
3 (m− n)3m+n. (3)

By allowing non-standard normalizations for the fields( 2
5,

7
5), (

7
5,

2
5), (

7
5,

7
5) we can identify

them as descendants of theW -primary field( 2
5,

2
5) as follows:∣∣ 7

5,
2
5

〉 = W−1

∣∣ 2
5,

2
5

〉 ∣∣ 2
5,

7
5

〉 = W−1

∣∣ 2
5,

2
5

〉 ∣∣ 7
5,

7
5

〉 = W−1W−1

∣∣ 2
5,

2
5

〉
.

2.1. Integrable perturbations and conserved quantities

The most general action for a perturbed conformal theory is

S = S0+ V V =
∫

d2z 8(z, z)

whereS0 is the action of the conformal field theory and the potentialV is given in terms
of some local field8(z, z).
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A field U(z) which is holomorphic in the unperturbed theory may developz dependence
in the perturbed theory since its correlation functions are given as

〈U(z, z) · · ·〉 =
∑
n

1

n!
〈U(z)V n · · ·〉0 (4)

where〈·〉0 is calculated in the unperturbed theory. To first order, thez dependence of (4)
arises from the operator product expansion ofU andv:

U(z)8(w,w) = · · · + χ(w,w)
z− w + · · · . (5)

Hence, to first order

∂ U(z, z) = χ(z, z)+ total z-derivatives. (6)

If χ(w,w) is a totalz-derivative, i.e. if|χ〉 = L−1|ξ〉 for some state|ξ〉, then
∮

dz U remains
conserved to first order in perturbation theory. By an abuse of notation we shall say thatU

is conserved if∂U = ∂ξ for someξ . It is sometimes possible to show that no higher-order
corrections are possible and that in this way a quantity is conserved to all orders in the
perturbed theory. Thew dependence of8, χ andξ is essentially irrelevant when checking
the conservation of

∮
dz U(z) to first order, and so we drop this dependence for the rest of

this section. We shall keep the notation8h,h for fields with z and z dependence, and use
φh or φh for the chiral dependence of such a field.

A large class of integrable perturbations of conformal field theories are affine Toda
field theories, for which the existence of an infinite number of conserved quantities has
been proven by Feigin and Frenkel [9]. Two perturbations of the Potts model can be
interpreted as affine Toda field theories (ATFTs), namely the perturbations by the fieldsφ2/5

andφ7/5. (NB: the87/5,7/5 perturbation is irrelevant, and consequently there may be higher-
order corrections to the conservation equation, but we shall ignore the anti-holomorphic
dependence of perturbations and other such issues.)

Theφ7/5 perturbation corresponds to thea(1)1 ATFT, or Sine–Gordon, theory which has
conserved currents̃U1(z) of weights1 = 2n.

The φ2/5 perturbation corresponds both to thea(2)2 ATFT with conserved currentsU1
polynomial in L of weights1 = 6n, 6n+2, and also to thea(1)2 theory with conserved
currents polynomial in bothL andW of weights1 = 3n, 3n+2. In this case the currents
of even weight 6n, 6n+2 are common to both theories and are independent ofW whereas
the currents of odd weight 6n+ 3, 6n+ 5 are odd underW →−W .

We give the first few statesU1 = U1(0)|0〉 and Ũ1 = Ũ1(0)|0〉 below. (NB: these
expressions are not unique, since they are only defined up to the addition of total derivatives
and null states. We have chosen representatives which are reasonably compact).

2.2. Zamolodchikov’s counting argument

In [5] Zamolodchikov showed how a simple counting argument can prove the existence of
conserved quantities. We recall the method since some elements of it will be useful later.

Let us consider the simple case of a currentUn(z) of conformal weightn which is a
polynomial inL(z) and its derivatives, and a perturbation by a Virasoro primary fieldφh(z).
We have [∮

Un ,

∮
φh

]
=
∮
ψ (7)
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Table 1. Conserved currents of the( 2
5) and( 7

5) perturbations.

U2 = L−2 |0〉
U3 = W−3 |0〉
U5 = L−2W−3 |0〉

U6 =
(
L−2L−2L−2 + 21

10
L−3L−3

)
|0〉

U8 =
(
L−2L−2L−2L−2 − 159

25
L−3L−3L−2 − 249

25
L−4L−2L−2

)
|0〉

U9 =
(
L−2L−2L−2W−3 + 1071

10
L−2L−2W−5 + 16 731

125
L−3W−6

)
|0〉

Ũ2 = L−2 |0〉
Ũ4 = L−2L−2 |0〉

Ũ6 =
(
L−2L−2L−2 − 7

30
L−3L−3

)
|0〉

Ũ8 =
(
L−2L−2L−2L−2 − 229

375
L−3L−3L−2 + 871

375
L−4L−2L−2

)
|0〉

Ũ10 =
(
L−2L−2L−2L−2L−2 + 3821

225
L−4L−2L−2L−2 + 657

50
L−3L−3L−2L−2 − 99

10
L−4L−3L−3

)
|0〉

Table 2. Characters of quasi-primary states in the Potts model.

χ̃0 = 1+ q2 + q4 + 2q6 + 3q8 + q9 + 4q10+ . . .
χ̃3 = 1+ q2 + q3 + q4 + q5 + 3q6 + 2q7 + 4q8 + 4q9 + 6q10+ . . .
χ̃2/5 = 1+ q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + 4q9 + 5q10+ . . .
χ̃7/5 = 1+ q2 + 2q4 + q5 + 3q6 + 2q7 + 5q8 + 4q9 + 7q10+ . . .

where|ψ〉 = (Un)−n+1 |φh〉. If the dimensiond0
n of the space of non-trivial integrals

∮
Un

is greater than the dimensiondhn−1 of non-derivative descendants of|8〉 at level n − 1,
then the existence ofd0

n − dhn−1 conserved currents is guaranteed. The first few conserved
currents of the( 2

5) and( 7
5) perturbations are given in table 1.

If we define the modified character of a Virasoro highest-weight representation of weight
h by

χh = Tr qh−L0 (8)

then the characters̃χh of non-derivative, or quasi-primary, states are given by

χ̃0 =
∑

d0
nq

n = (1− q) χ0+ q χ̃h =
∑

dhnq
n = (1− q) χh (h 6= 0,−1 . . .).

(9)

Applying this to the Potts model, we find (to orderq10) the characters given in table 2.
Now, examiningχ̃0 − q χ̃2/5 we can infer the existence ofU2, U6, U8 (and, expanding

further,U12), and examiningχ̃0− q χ̃7/5, of Ũ2, Ũ4, Ũ6 and Ũ8.
This method may be adapted to deduce the existence of the conserved quantities which

are linear inW [4]. Since these currents are all Virasoro descendents ofW(z), the number
of such quasi-primary fields of weightn is given byd3

n−3. Similarly, since the operator
product of a Virasoro descendant ofW(z) with φ2/5 is a Virasoro descendant ofφ7/5, the
number of quasi-primary fields of weight( 2

5+n−1) which may occur on the right-hand side
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of (7) is given byd7/5
n−2. Consequently, to verify the existence of a conserved current of

this form we need to checkq3 χ̃3 − q2 χ̃7/5, and find that in this wayU3, U5 andU9 are
guaranteed to exist.

3. The general perturbation of the three-state Potts model

As seen earlier, the general three-state Potts chain has three parameters and Cardy proposed
that this corresponds to the action

S0+
∫

d2z
(
τ 82/5,2/5+ δ 87/5,2/5+ δ 82/5,7/5

)
. (10)

The standard thermal perturbation of the three-state Potts model is given byδ = δ = 0
and is integrable with the conserved currentsU3, . . . . In [6] Cardy showed that the more
general model withδ = 0 is also integrable by the following argument. Since the anti-
holomorphic dependence of both fields82/5,2/5 and87/5,2/5 is the same, i.e.φ2/5(z), all
the anti-holomorphic conserved currents of the thermal perturbation will remain conserved
for this double perturbation. However, a quick glance at table 1 shows that there are no
non-trivial holomorphic conserved currents common to both theφ2/5 andφ7/5 perturbations,
and so it is not clear what will happen to the holomorphic conserved currents of the thermal
perturbation when the perturbationδ is turned on.

However, it is important to note that the action (10) no longer preserves rotational, or
Lorentz, invariance, and hence conserved currents need not have a well defined spin. For
example, we can consider currents of the form

Tn = T(n,0) + δ

τ
T(n,1) (11)

whereT(n,0) andT(n,1) are some conformal fields of weightsn andn+1, respectively. Such
a current will be conserved for the doubly perturbed(δ = 0) action if the following three
equations hold:[∮

T(n,0) ,

∮
φ2/5

]
= 0 (12)

[∮
T(n,1) ,

∮
φ7/5

]
= 0 (13)

[∮
T(n,0) ,

∮
φ7/5

]
+
[∮

T(n,1) ,

∮
φ2/5

]
= 0. (14)

Equations (12) and (13) imply thatT(n,0) = α Un andT(n,1) = β Ũn+1 for someα, β. The
extra requirement (14) can be ensured by a modification of Zamolodchikov’s argument. In
this case, if there is only a single quasi-primary descendent ofφ2/5 at level n then both
terms on the right-hand side of (14) must be proportional, and hence cancel for some choice
of α/β. Examiningχ̃2/5, we see that this does indeed happen forn = 3 andn = 5. As a
result we have proven the existence of holomorphic conserved currents in Cardy’s model.

The next possible value ofn for which there might be a conserved current of the
form (11) isn = 8, but explicit calculation shows that this trick will not work. However,
we can instead extend the ansatz to include three terms

Tn = T(n,0) + δ

τ
T(n,1) +

(
δ

τ

)2

T(n,2) (15)



5604 G M T Watts

Table 3. Conserved currents of the( 2
5) plus ( 7

5) perturbation.

T2 = U2

T3 = U3 − 7

9
Ũ4

T5 = U5 − 91

180
Ũ6

T6 = U6 − 147

275
(12L−4W−3 − 15L−3W−4 + 10L−2L−2W−3) |0〉 + 175

66
Ũ8

T8 = U8 − 4 837 476

1 322 035
(L−2L−2L−2W−3 + . . .) |0〉 + 343

387
Ũ10

where nowT(n,0) = α Un, T(n,2) = β Ũn+2 and we have the non-trivial requirement that[∮
T(n,0) ,

∮
φ7/5

]
+
[∮

T(n,1) ,

∮
φ2/5

]
=
[∮

T(n,1) ,

∮
φ7/5

]
+
[∮

T(n,2) ,

∮
φ2/5

]
= 0.

(16)

We have verified that there are conserved currents of this form forn = 6, 8 by explicit
calculation. We include these with the two previous conserved currents in table 3, in which
we again give the statesTn = Tn(0)|0〉 and have setδ/τ = 1 for simplicity.

Finally we should remark that (withδ = 0) there are no further corrections to the
conservation equation forTn on dimensional grounds, and so this result should be exact to
all orders in perturbation theory.

4. Remarks and conclusions

We have shown by counting arguments and explicit calculation that the double perturbation
of the three-state Potts model considered by Cardy has extra conserved currents interpolating
those known for the two constituent perturbing fields.

Although we have only constructed four conserved currents, an appealing pattern has
appeared which suggests that there are conserved currentsTn for all n = 0, 2 mod 3,
polynomial in x = δ/τ , and interpolating the conserved currents of theφ2,5 and φ7/5

perturbations:

T3n = U3n + . . .+ xn βn Ũ4n

T3n+2 = U3n+2+ . . .+ xn β ′n Ũ4n+2.
(17)

It is interesting to note that the conserved quantities in table 3 remain formally conserved
to first order for the even more general action

S0+
∫

d2z

(
τ 82/5,2/5+ δ 87/5,2/5+ δ 82/5,7/5+

(
δδ

τ

)
87/5,7/5

)
. (18)

This again relies on ignoring thez dependence of the perturbing fields, in which case we
can formally factorize the potential as

τ

(
φ2/5+ δ

τ
φ7/5

)(
φ2/5+

δ

τ
φ7/5

)
and it is clear that the new currentsTn are conserved for (18), as are similar currents
T n constructed from the anti-holomorphic algebra. This is not sufficient to conclude that
this potential is integrable—the first order in perturbation theory is no longer exact since
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(δ3δ
3
/τ) is dimensionless and there are possible corrections to the conservation equation

at arbitrarily high orders in perturbation theory. Furthermore, the explicit presence of an
irrelevant field in the action spoils the property that the UV limit of the perturbed model is
simply the conformal field theory.

An interesting point to notice is that the results of [10] indicate thatφ = ϕ =
π/2, 0.901. . . < λ < 1.1095. . . has massless modes described by a parity violating theory
with c = c = 1. It is believed that these values are continuously connected to the conformal
point φ = ϕ = 0, λ = 1 through massless theories, but it is hard to see how they can be
reached by perturbation of the conformal three-state Potts, since the central charge of the
conformal three-state Potts model is4

5 and one might expect central charge to decrease along
renormalization group flows†. Perhaps the presence of an irrelevant field in the perturbation
signals that it is a perturbation from a model with largerc, as happens, e.g., for the Virasoro
minimal models where the irrelevantφ3,1 perturbation of theMp model corresponds to the
IR limit of the φ1,3 perturbation of theMp+1 model. However, one should remember that
the true state of lowest energy has non-zero momentum and that it may be very hard to
relate the exact results to those obtained in the perturbed conformal models.

It is also interesting to note that Cardy finds a different two-dimensional subspace of the
space of coupling constants to be integrable (δ = 0) to that which appears to be the case from
the transfer matrix approach (τ ∼ δδ) suggesting that it might be possible that both results
are correct, consistent with the action (18) being integrable for all values of the coupling
constants. Although the spin chain is not believed to be integrable for all values [11], it is
possible that the scaling limit of the spin chain only differs from an integrable model by
irrelevant operators, which, while breaking the exact integrability of the spin chain would
give an integrable model in the IR. However, as Cardy notes, it is also possible that there is
no relation between lattice integrability and the integrability of perturbed conformal models.

We should like to mention that there are well-known models which contain
dimensionless parameters and which are believed to be integrable, for example the staircase
models [7]. These are double perturbations of a conformal field theory by a relevant and an
irrelevant operator which share the same conserved currents (to first order). While it is not
possible to check integrability by exhibiting conserved currents exactly for the reason that
there are dimensionless parameters, they do appear to share many properties of integrable
models.

Finally, we should like to discuss possible generalizations of these results. Cardy’s
argument is sufficient to show that given anyW -algebra and an integrable perturbation8
then the anti-holomorphic conserved quantities for8 remain conserved for any perturbation
of the form W−18. By contrast, to be able to apply our method to find holomorphic
conserved currents for such a perturbation, it is also necessary thatW−18 is an integrable
perturbation for some subalgebra of theW -algebra. In the model treated the original
perturbation is82/5 andW−182/5 is an integrable perturbation for the Virasoro subalgebra
of the W3 algebra. However, it is easy to check that there are no other rational models
of the W3 algebra for which8 is an integrable perturbation andW−18 is an integrable
perturbation of the Virasoro subalgebra.

The next obvious possible generalization is theZn chiral Potts models. These are
described by a spin chain Hamiltonian given in terms of(n × n) matricesσ, 0, and again
dependent on three parametersλ, φ, ϕ. The pointλ = 1, φ = ϕ = 0 is now described by
a c = cn = 2(n − 1)/(n+2) conformal field theory which can be variously understood as

† Strictly speaking, thec-theorem which states thatc is non-increasing along renormalization group flows only
applies to Lorentz-invariant theories, but asc is a measure of the number of massless degrees of freedom, it is
hard to see how it can actually increase when a theory is perturbed.
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Table 4. W(orb)
n and related affine algebras.

n mod 4 W
(orb)
n g1 g2 g3 g4

0 WDn/4 d
(1)
n/4 d

(1)
n/4 b

(1)
n/4 a

(2)
(n−2)/2

2 WB(0, (n−2)/4) b
(1)
(n−2)/4 b

(1)
(n−2)/4 a(4)(0, (n−2)/2) b(1)(0, (n−2)/4)

1, 3 WB(n−1)/2 b
(1)
(n−1)/2 c

(1)
(n−1)/2 a

(2)
(n−1) c

(1)
(n−1)/2

theZn parafermion model [12], the first unitary minimal model of theWn algebra [14] or
a model with aW(2, 3, 4, 5) chiral algebra [16]. Several perturbations of this conformal
field theory were studied in [13], and the thermal perturbation is given by a field of weight
h = hn = 2/(n+2); Cardy has proposed that the chiral perturbation corresponds to a
level-1W -descendent of this field which, due to the null vectors in the representation|h〉,
is probably of the formW(3)

−1 |h〉 (which is also the fieldφ of [13]). Given the results above,
it is natural to suppose that this is itself an integrable perturbation for the subalgebra of the
W -algebra which is invariant under the automorphism which sends the odd-spin generators
W →−W . The full W -algebra and its orbifold have been studied in some detail [15, 16],
and it is believed that forc = cn the orbifold algebra is of the formW(2, 4, 6, 8). While it is
not yet possible to study the representations of this algebra directly, there is some evidence
that for eachn it is in turn a truncation of some particular ‘Casimir’W -algebra, which we
denote byW(orb)

n . This identification depends on(n mod 4) as given in table 4.
The identification ofW(orb)

n for n even was made by Fateev in [13]. The evidence is
that in each case the self-coupling of the spin 4 field as given in [16, 17] is the same in
Wn andW(orb)

n , thatcn is a minimal modelW(orb)
n , and that in each casehn, hn+1 and 3 are

minimal model representations ofW(orb)
n at c=cn, as we detail below.

For each algebraW(orb)
n in table 4, the allowed representations atc=cn are labelledhλ,µ

whereλ,µ are integrable weights of the two affine algebrag1 and g2 at levels 2 and 3
respectively. Then in each case we find amongst the allowed representations the values
h0,31 = 2/(n+2) = hn, h0,231 = (n+4)/(n+2) = hn+1 andh0,331 = 3, where31 is the
first fundamental weight ofg2.

These three equations suggest strongly that atc = cn, the algebraW(orb)
n can be

augmented by a representation of weight 3 to give the fullWn algebra; that the thermal
perturbation is given by the field(0,31), corresponding to theg3 ATFT; and that there is a
Wn descendent of this field at level 1 which is itself a highest weight of theW(orb)

n algebra
of weighthn+1 of type(0, 231) corresponding to theg4 ATFT (see table 4 forg3 andg4).
Hence both these perturbations are integrable, corresponding as they do to ATFTs.

Thus we suggest that the whole procedure in this article will also carry through for
the Zn chiral Potts models. The thermal perturbation corresponds to thea

(1)
n−1 ATFT with

conserved currents of spins 2, . . . , n modn, and the descendent at level 1 to theg4 ATFT
with conserved currents of all even spins, and we expect conserved currents for the double
perturbation interpolating these.
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